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Abstract

The spectral calculations of the flow which develops near a heated vertical wall in a fluid stably stratified by a salinity
gradient are carried out. The case of weak stratification and heating due to a constant heat flux is considered. The
numerical results are compared to the experimental ones. Both on qualitative and quantitative arguments, a satisfactory
agreement is obtained. The cell formation process is discussed by focusing on the occurrence of counter-rotative cells
and on the instability phenomenon of the simultaneous creation of cells. The high sensitivity of such phenomena to
slight disturbances at the initial time is pointed out. © 2001 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermohaline experiments were mainly stimulated
by the discovery of layered structures in ocean or in
atmosphere, where thick homogeneous layers are sep-
arated by thin high gradient interfaces (see e.g. [1]). It is
now recognized that one mechanism which can lead to
the formation of such sharp interfaces is the double
diffusive convection, i.e., a convective flow driven by
buoyancy forces in a two-component medium with dif-
ferent diffusivities. This kind of convection manifests
itself by the splitting of the initial smooth density profile
into a system of layers separated by high density
gradients. The reviews of early investigations are pre-
sented in [2,3]. As observed in many experiments, con-
vecting layers form in a continuously stratified salt
solution under bottom heating [4], above horizontal
cylinders [5] or point heat sources [6,7], under side
heating in slots [8-11] or, as considered in this paper, in
tanks [12-17], as soon as the overheating exceeds some
critical value. The distinction between slots and tanks
refers to their width with respect to the “potential rise”
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of an overheated fluid particle. Notice also that double
diffusive convection studies have applications not only in
the domain of oceanography but also in other fields like
safety in gas-storage (overrolling problem in gas reser-
voirs) [18].

Thermohaline convection constitutes a challenge to
the numerical methods: due to high value of the Lewis
number, Le = kt/Ks ~ 100, where xr and ks are the
thermal and salt diffusivities, respectively, the salt is es-
sentially transported, so that very sharp interfaces form
between convective cells of nearly uniform salt concen-
tration. Of course, coarse grids had to be used in earlier
calculations which considered the case of thermohaline
convection in slots [19-21]. Later, thanks to the in-
creasing capabilities of computers, it has become poss-
ible to conduct calculations in tanks and for higher
values of the “Rayleigh number” [22,23]. Usually the
temperature is prescribed at the heating wall but in some
studies it is the heat flux density which is imposed
[23,24]. Also, at the initial time the fluid is generally
assumed to be isothermal, but some papers investigate
the situation where the fluid is initially both stratified in
temperature and salinity [24,25]. More often, low-order
methods like finite difference [19,25,26], finite volume
[22-24] or finite element [20] methods are used, but in
[21,27] spectral calculations are carried out. However, in
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[23] an adaptative two-block composite grid strategy is
used in order to accumulate grid points near the heating
wall, on the contrary of what is done in [25,26] where
equidistant grids are used.

For such calculations, spectral methods are well
suited because their high accuracy allows a fine de-
scription of the physical phenomena. Moreover, simple
shape of the computational domain makes the Cheby-
shev method very attractive and the use of a multi-
domain technique leads to efficient algorithms well
adapted to parallel computations. Thus, the spectral
multi-domain method described in [28,29] is used here to
compute the convective flow observed in the laboratory
experiments that we have carried out. However, per-
forming this simulation was a real challenge, due to the
size of cells compared to the height of the heating
wall, and a rather important number of grid-points
(= 6 x 10%) has been used to perform a reliable 2D nu-
merical calculation. However, as mentioned in [30], 3D
investigations could be desirable, but the satisfactory
agreement obtained here between our experimental and
numerical investigations gives a justification for the 2D
approximation.

In this paper, we are essentially interested in the
cell formation process. Thus, counter-rotating cells are
difficult to observe experimentally, whereas they are
predicted by the linear stability analyses [9,31] and
easier to obtain numerically. Moreover, after the ear-
lier formation of a few cells at the extremities of the
heater, the cells can form simultaneously along the
heated wall or successively, as already discussed in [§].
Concerning this cell creation process, the numerical
approaches may be in disagreement: the numerical
results of [21,23,27] only show the successive creation
of convective cells, first at the lower wall and later at
the upper one, whereas in the calculations of [22,25,26]
the simultaneous creation seems to be obtained. On the
experimental side, after the formation of the first cells
the simultaneous creation is generally observed (see
e.g. [8,12,13]). For the first time, to our knowledge,
the present calculations show that the occurrence of
the successive or simultaneous creation process is
strongly linked to the amplitude of initial disturbances,
at least when high-order methods are involved. In the
same way, it is clearly pointed out that counter-ro-
tating cells are much more intense when no distur-
bances are used at the initial time, so that some
disagreements between the experimental observations
and theoretical or numerical investigations may be
better understood.

The paper is organized as follows: Section 2 is de-
voted to a brief description of the experimental setup, to
its modelling and to the spectral-Chebyshev multi-do-
main method used to solve the governing equations. In
Section 3, the results of the numerical simulation are
presented and comparisons with the experimental results

are provided. In Section 4, we point out the influence of
initial disturbances on the cell formation process and,
finally, conclude in Section 5.

2. Experimental setup, modelling and numerical method
2.1. Experimental setup

Here we only recall the basic elements required for a
good understanding of the paper, since more details on
the experimental setup and techniques can be found
elsewhere, e.g., in [32]. The tank height, length and
horizontal width are, respectively, 50, 50 and 15 cm. The
bottom and vertical walls are isolated and the free upper
surface is covered by a plastic sheet. At the centre of
the tank two different heaters can be used: a water-
heater or an electric heater. Using the water-heater (flat
heat exchanger) approximately permits to impose the
temperature, whereas with the electric heater one can
control the heat flux density ¢.

A two-tank system is used to fill the tank with a
linearly stratified fluid, i.e., such that the salinity gradi-
ent is constant and downwards. Its value is measured
thanks to an electric conductivity sensor: the electric
conductivity being connected to salinity, a slight
disturbance of the fluid induces oscillations of the con-
ductivity at the buoyancy period 7i,. Then the Brunt—
Vaisala angular frequency N and the characteristic
length A of the stratification are obtained, respectively,
from the relations NT, = 2r and N’>A = g. The salinity
difference, JS, between the top and bottom of the tank
can be determined from the relation f0S = H/A, where
f is the salinity expansion coefficient and H is the height
of the tank. Let us recall that N is in fact only constant
for an exponentially stratified fluid, since N> = —(g/p)
(0p/0y). However, assuming a constant value of N is
valid as soon as H < A.

Temperature probes are located inside the tank: es-
pecially, the environment temperature, mean tempera-
ture of the electric heater and temperatures of the
vertical walls opposite to the heater are measured. A
Schlieren system is used to visualize the flow, by pro-
viding an image connected with O.n, the partial deriva-
tive of the fluid refractive index n with respect to the
horizontal axis x, itself connected with 0,p, due to the
dependence of p on n.

Comparisons between the numerical and exper-
imental results will be done for the experiments con-
ducted with the electric heater, for which the boundary
condition is well controlled: the heat flux density ¢ may
be assumed to be uniform on the heater and the global
flux results from voltage and electric current measure-
ments. The height of the electric heater is equal to 30 cm,
leaving a free space of 10 cm at the top and at the
bottom of the tank.



C. Sabbah et al. | International Journal of Heat and Mass Transfer 44 (2001) 2681-2697 2683

From the experiment one can deduce several char-
acteristic parameters of the flow, like the mean height
and width of the cells, as well as derived quantities such
as the ratio K, of the mean height to the height
h, = adT A to which an overheated fluid particle would
rise in the initial density gradient [12].

2.2. Modelling

Computational domain. For obvious symmetry rea-
sons, only the part of the tank on the right-hand side of
the heater is considered, as shown in Fig. 1. Moreover,
to decrease the computation cost and knowing that far
from the heater the fluid is nearly at rest, the half-width
is taken to be smaller, L = 12 cm rather than 25 cm. On
the contrary, the height has been kept equal to
H = 50 cm, since we are not only interested in local
phenomena but also in the global phenomenon of the
simultaneous creation of convective cells.

Initial conditions. At the initial time the fluid is at rest.
The temperature is homogeneous. The salinity gradient
is constant and downwards.

Boundary conditions. Neumann boundary conditions
are used for temperature. The electric heater is modelled
by a time-independent and uniform heat flux density,
which vanishes regularly at the heater extremities. In

VvV =o0.
0yS = 0,T = 0.
g9
0.5 = 0. 9,5 = 0.
3,1 = ¢(y) 9. T =0
VvV =0. V=0
0 L
x
9,8 =09,T =0.
V=0

Fig. 1. Geometrical configuration and boundary conditions.

agreement with the heater technology, 2 mm on each
side are used to this end. Elsewhere, the heat flux
density is assumed as null: (i) for symmetry reasons,
above and below the heater, (ii) by assuming that the
isolated walls of the tank are perfectly adiabatic and
also (iii) by neglecting the thermal losses at the upper
fluid surface. Such assumptions are realistic, when
knowing that the overheating on the heater is about
1 K. Homogeneous Neumann (no-penetration) condi-
tions are used for salinity and no-slip conditions are
used for velocity.

Governing equations. The fluid motion and the heat
and salinity transfers are modelled within the Boussinesq
approximation. Thus, (i) the fluid flow is governed by
the incompressible Navier-Stokes equations coupled to
transport-diffusion equations for temperature and
salinity, (ii) the density variations are only considered in
the buoyancy term and assumed as linearly dependent
on the variations of temperature and salinity to their
mean values at the initial time.

The partial differential equations can then be written
in dimensionless form

1
ﬁDtV: —Vp+Ra,(T —R,S)e, + AV, (1)
V-V=0, 2)
DT = AT, (3)
DS —iAS (4)
T Le

with e, for the unit vertical vector, ¢ for the time, V for
the velocity, p for the deviation of pressure from the
hydrostatic one, 7 and S, respectively, for the deviations
of temperature and salinity concentration from their
mean initial values and D, for the material derivative.
These quantities have been made dimensionless by using
the following reference values: L, L?/xr, x1/L, pvicr/L?,
Lo/ and oS, where p, A and v are the density, the
conductivity and the kinematic viscosity, respectively.
The Prandtl (Pr = v/it) and Lewis (Le = k1/Kks) num-
bers are the characteristic parameters of the fluid,
whereas the Rayleigh number Ra, and the buoyancy
ratio R, are characteristics of the flow. For the present
problem they are defined by

 ogpgl? _ péSA_ HJ
P kAT " apl  AogL

Ra (5)

Note that the choice of L as characteristic length is
convenient for modelling, but, from a physical point of
view, really justified for slot type domains only. How-
ever, it is always possible to use a convenient reference
length for the calculations and then to discuss the nu-
merical results by using other reference lengths. This is
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what is done in our analysis of the numerical and ex-
perimental results.

2.3. Numerical method

Discretization in time. The time derivatives are dis-
cretized by using a second-order finite difference
backward Euler approximation. The linear terms are
treated implicitly and the convective terms explicitly, by
using a second-order Adams—Bashforth extrapolation,
except for the salinity which is treated implicitly. For
salinity equation, large value of the Lewis number
would lead to very small time-steps if the term V - VS
was treated in an explicit way. Considering this term
implicitly strongly reduces the constraint on the time-
step but, of course, necessitates the use of an iterative
procedure.

e Discretization in space. Along the vertical direction
a domain decomposition technique is combined to a
parallel calculation, each sub-domain being associated
to a processor. At the interfaces between the subdo-
mains, the essential and natural transmission conditions
are imposed. In each sub-domain, a pseudo-spectral
method is used to solve at each time-cycle and suc-
cessively (i) a Helmholtz equation for temperature, (ii) a
steady advection—diffusion-type equation for salinity
and (iii) a generalized Stokes problem for velocity and
pressure fields. The partial differential equations are
approximated with the Chebyshev collocation method
using a strong formulation. The general Stokes problem
is solved with the same vector space for both the velocity
components and pressure.

Finally, with P,; the space of the polynomials of
maximum degreg I in x (horizontal axis) and J in y
(vertical axis), €, ; the set of the grid-points of the sub-
domain Q (1 <k<K) and QfJ the sub-set of the inner
points, at each time-cycle one solves the following
problem:

For k=1,...,K, find V in vaj(ﬁk) and p, T, S in

P,_J(Qk) such as:

AT —orT = fr in Q) (6)
AS —LeV*-VS—0sS=fs inQ,, (7
AV —ayV —Vp=f,(T,S) inQ,, (8)
VV=0 in®, (9)
+ boundary conditions (10)

with the following continuity constraints: for
k=1,...,K—1

[Vﬂk:[Tﬂk:[S]k:()? (11)
[ava]]k = [[a.VT]]k = [[GyS]k = [p]k =0, (12)

where [ - ], is the jump at the interface , = @ N Q" .

Expressions of the coefficients ¢ and terms f directly
result from the time-discretization. The velocity V*, in
the Eq. (7), is calculated from the values of velocity at
the two previous time-cycles, using a second-order ex-
trapolation.

The problem (6)—(10) is first solved with homoge-
neous values of the unknowns at the interfaces, but
taking into account the forcing terms and the boundary
conditions. Then, the correct interface values are de-
termined by using influence matrices to impose the
transmission conditions. These influence matrices,
which are computed in preliminary calculations, asso-
ciate for the corresponding homogeneous problem the
interface values to the jumps. Then, the full problem is
solved with the correct values of 7, S and V at the in-
terfaces. In each sub-domain: (i) equation for the tem-
perature is solved by a direct method, (ii) for the salinity
equation one uses the “Preconditioned Conjugate Re-
sidual” (see e.g. [33]) iterative procedure, with the
Helmholtz operator A — a5 as preconditioner, and (iii)
the generalized Stokes problem is solved in a direct way,
using a Poisson’s equation for pressure. The pressure
boundary value is calculated by using again an influence
matrix technique, yielding a divergence-free velocity
field. Nevertheless, due to the use of the Py — Py-type
approximation, the pressure is not unique and is affected
by the so-called spurious modes of pressure. Conse-
quently, transmission conditions on pressure, [p], = 0,
cannot be enforced strongly. The difficulty has been
overcome by imposing them weakly, using as trial
functions a set of polynomials orthogonal to the pres-
sure space kernel. The details of the algorithm are given
in [28].

Finally, we have to mention that to avoid too small
values of the dimensionless time-step, which could induce
inaccuracies, the reference values for time and velocity
are, respectively, divided and multiplied by (Ra(ﬂ)o's.

3. Numerical and experimental results

Calculations have been done with the following
values of the characteristic dimensionless numbers:
Pr=71, Le =100, Ra, = 3.46 x 10® and R, = 1.66. For
the space discretization we use K = 34 sub-domains,
with 7/ =250 and J =70 in each sub-domain, i.e.,
about 6 x 10° grid-points. A coordinate transform is
used in x to accumulate mesh points near the heater
where the flow is especially complex. In physical units
the time-step is 7~ 0.2 s. Two simulations (SI and
S2) have been performed, till the final time
tr = 30 mn. These simulations differ from the initial
condition for temperature: for S2 the initial tempera-
ture is randomly disturbed with an amplitude equal to
0.014 K whereas no disturbances are used for SlI.
As expected, the disturbed calculation S2 yields the
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Table 1

Stratification characteristic length (A), fluid temperature (7;), mean heat flux density (¢,,), Prandtl (Pr), Lewis (Le), Rayleigh (Ra,)
numbers and buoyancy ratio (R,) for the experiments and for the simulations

Exp. A (m) T; (°C) O (W m™?) Pr Le Ra, R,

El 107.8 18 71.9 7.15 99.3 3.23 x 108 1.72
E2 108.6 19 74.2 7.08 100 3.51 x 108 1.57
S1, S2 103.2 20 69.4 7 100 3.46 x 10 1.66

results in a better agreement with the experimental
data and so are used in this section. The results ob-
tained for the simulation S1 will be compared to those
of S2 in Section 5, in order to study the influence of
initial disturbances.

A set of laboratory experiments have been done with
a weak background salinity, the upper layer being
freshwater (at the lower S = 5%0). We focus on two of
them (E1 and E2), which yield values of the dimen-
sionless numbers approximately equal to those used in
the calculations, as shown in Table 1 where values used
for the numerical simulations are also given (7; stands
for the temperature used to estimate the values of the
fluid physical parameters and ¢,,, for the mean heat flux
density during the experiments).

The main difficulty in the determination of the dif-
ferent dimensionless numbers comes from the thermal
expansion coefficient o, which strongly depends on both
the salinity and temperature. Here we have simply
considered its values for fresh water, since the salinity is
very low. However, it may be observed, in Eq. (5), that o
appears only through the product a¢, so that for the
numerical calculations a change in the value of  may be
balanced by a change in ¢.

The values of « that are used in Table 1 are:
o (18°C) = 1.85x 1074 K", o« (19°C) = 1.96 x 10~* K™
and « (20°C) = 2.06 x 10~* K.

Note that for the sake of simplicity, the same nota-
tions are used for the values with or without dimension,
the dimension being mentioned in the latter case. To go
easily from ones to others, the main reference values are
listed in Table 2.

3.1. Numerical results

Figs. 2-5 show the results obtained with the simu-
lation S2. The isolines of the vorticity w, the stream-

function s, the temperature 7 and the salinity S are,

respectively, displayed, at the different times ¢ = {# =

0.0048, #, =0.006, 5 =0.012, t4(=1r) =0.018} (¢ = {8,

10,20,30 mn} in physical units). In Fig. 6 the 0,p fields

are given, at the same times. They may be viewed as the

pictures provided by the optical Schlieren system. No-
tice that these figures only visualize the “active part” of
the computational domain: elsewhere the fluid is nearly
at rest. However, one observes, away from the con-
vective cells and the heat front, horizontal stripes as-
sociated with a modulation along the vertical direction.

These stripes constitute a system of dissipative gravity

waves which propagate into the undisturbed fluid. It is

interesting that the calculation has captured this wave-
phenomenon which was analyzed earlier, both on its

theoretical and experimental aspects [32,34,35]. Fig. 7

gives enlargements of the temperature and salinity

fields at the final time f¢, in order to show the com-
plexity of the temperature and salinity fields, with the
steep gradients of salinity at the interfaces of the con-
vective cells.

Essentially, the following phenomena have been ob-
served:

e An up-flow forms along the heater, inducing a distor-
tion to the salinity isolines, together with convective
cells beginning to form at its extremities, first at the
bottom and then at the top. Afterwards new cells ap-
pear on contact with the first ones which go on grow-
ing. This is a phase of successive creation of cells. In
the central part and near the heater, the streamlines
are vertical.

o At~ 1y, the simultaneous creation of a set of cells oc-
curs. Just before, oscillations of the streamlines are
observed as well as the appearance, in the 0,p field,
of horizontal stripes, away from the heater. At time
t ~ 1, a pattern of cells can be observed all along
the heater.

Table 2

Main reference values for the different variables
Length L Time L*x;! Velocity wrL™! Vorticity xrL™2
0.12m ~10°s 1.18 x 107 m s™! 0.99 x 1073 57!

Stream-function xr
1.42 x 1077 m? 57!

Temperature Lol Salinity HA™' "
14.1 K ~ 5%o
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Fig. 2. Vorticity watt=1¢, i =1,...,4, for 0 <x<0.68 and 0.75 <y <3.5 (N.B. full lines are used for negative values).

e Then the cell width is increasing, by means of a
doubling process: each cell develops into a set of
two small internal cells and, later, into a set of three
internal cells. This growing process is especially visi-
ble on the 0,p fields. In the meantime, the stripes
stretch out, but keep the vertical periodicity corre-
sponding to the height of the convective cells at their
creation.

e The mean height of the cells is increasing by way of
merging. This process first begins at the extremities
of the heater and then propagates towards its central
part.

e Within each cell and internal cells, the salt concentra-
tion tends to become homogeneous. This induces rich
fine structures limited by stiff salinity gradients at the
different outer and inner interfaces.

3.2. Comparisons of the numerical and experimental data

Beyond the good agreement of the experimental
and numerical flow pattern evolutions, especially with

first the formation of convective cells at the extremities
of the heater and then with the simultaneous creation
of a set of convective cells, quantitative comparisons
have also been carried out. Thus, we have compared
the evolution of the mean temperature rise 67, of
the heater as well as the mean height 4, and width
In of the cells for the experiments E1 and E2 and
for the simulation S2. For both the experiments
and the simulation, these geometrical quantities have
been obtained by focusing on the central part of the
heater, i.e., along about 15 cm. The values of 4, are
easily obtained, e.g., from the 0,p field. The determi-
nation of /,, is less straightforward (see e.g., the dif-
ferent fields at + =#). We have used the temperature
field to get an estimate of the ‘“heat front location™.

Moreover, we have also compared derived quantities,

like:

e the Rayleigh number based on the measured (or com-
puted) overheating and on the rising height 4, of an
overheated fluid particle to reach its new neutral
buoyancy level [12]
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Fig. 3. Stream-function Y att=1¢, i =1,...,4, for 0<x<0.68 and 0.75 <y < 3.5 (N.B. full lines are used for negative values).

3

Ra= 28T ) ot A,

VKT
o the factor K, equal to the ratio of the mean height
of the cells to the potential rising height &,:

Ky = hy/h,.

Tables 3-5 give the results obtained for the exper-
iments E1 and E2 and for the simulation S2. At different
times, one can compare 67y, Ay, Im, K, and Ra. The
numerical results appear to be in good agreement with
the experiment E1, although the mean height of the cells
is a little smaller for the calculation than for the exper-
iments, with a direct influence on the ratio K,. They
compare worse with the experiment E2, for which the
mean heat flux density is higher, especially when focus-
ing on the Rayleigh number Ra. This mainly results
from the high sensitivity of this number to the product
40T, since Ra o (20T)". Thus a 20% discrepancy on 6T
induces a 100% difference on Ra. Moreover, it can be
observed that the experiments themselves do not com-
pare very well. This may result from a poor knowledge
of the real value of the thermal expansion coefficient o.

One has also to mention that the experimental heat flux
density is only nearly a constant, with some peaks at
about 80 W m™2.

One observes at the end of the calculation that the
Rayleigh number Ra reaches rather high values, es-
pecially far beyond the critical value associated with the
simultaneous creation of cells, 15000 42500 in [12],
4500 £ 1000 in [13] or 18000 £ 5000 in [16]. Note that
the discrepancy between these values may also result
from a poor knowledge of «.

Using again as reference length the potential rise 4,
one can also define a Nusselt number

= Pt _ 02l
ST A

This time-independent number is nothing but the di-
mensionless number 73 introduced in [36] for the char-
acterization of sidewall heating with constant heat flux
density. Let us remark here that choosing H rather than
L as characteristic length would result in R, = Nu~! in

Eq. (1).
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Fig. 4. Temperature T att=1¢, i=1,...

For this Nusselt number, using for the experiments
the mean value ¢, of the heat flux density, one obtains:
Nu(El) =~ 2.43, Nu(E2) ~ 2.68 and Nu(S2) = 2.50. One
observes that despite discrepancies between the input
parameters, the Nu(S2) value is well adapted. Again we
have to mention the importance of the parameter « in
the present problem: Ra,, R,, Ra and Nu depend on a,
which is only known approximately.

Fig. 8 compares the mean temperature rise of the
heater, for the experiments E1 and E2 and for the
simulation S2. After a quasi-parabolic evolution, asso-
ciated with the conductive regime, one observes that the
convective regime takes place. It manifests itself by a
slower and slightly oscillating evolution of the temper-
ature.

Fig. 9 shows the evolution of the mean height and
width of the cells for the experiments and for the sim-
ulation. From these curves one can estimate the moving
front velocity of the convective cell system: u,, = 0y/y.
Linear least-squares fitting (¢ > 8 mn) yield for the
experiments: uy(E1) ~0.16 cm mn™!,  wu,(E2) ~ 0.18

4, for 0<x<0.68 and 0.75<y<3.5.

I and for the calculation a little bit smaller

-1

cm mn~
value: u,(S2) = 0.15 cm mn

It is also of interest to consider the values of the
Rayleigh numbers, say Rat and Rag, introduced in [14]
and found to be important in [31], which are based on
the overheating and on the lengthscale ¢ = +/krt,
where ¢, corresponds to the onset of the instability
phenomenon. For the simulation S2, at t=1f,~t =
8 mn, one obtains J ~ 8.256 mm, Rar ~ 8570 and
Rag =~ 3110. One can then check that the so-obtained
points (Ras, Rat) fit well with the experimental diagram
produced in [14]. The reasonable idea that imposing a
flux density or an exponential-type increase of the
heating wall temperature (with a time-constant in the
range (75 s, 8000 s)) yields similar results is thus
strengthened. Moreover, we obtain RaT/Rag/4 ~ 20.6.
Such a value falls in the range 16.3 &+ 5, deduced from 36
experiments in [14].

However, the present results only agree qualitatively
with those of [37]. When using, as suggested in [37], the
characteristic length L* which makes the Rayleigh
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[

Fig. 5. Salinity Sat¢t=1¢, i=1,...,4, for 0<x<0.68 and 0.75 <y <3.5.

number in Eq. (5) equal to 1, we obtain approximately
hm/L* 2~ 12.5 and the Reynolds number Re = hyuy,/
v= 0.3 for our present value of the Nusselt number
Nu ~ 2.50, rather than values around 24 and 0.8, re-
spectively in [37]. Explanations may be found again due
to a poor knowledge of the exact value of the thermal
expansion coefficient o, which appears both in Nu and
L*, and, possibly, of an influence of the walls of the
rather small tank used in [37], since the choice of L* as
reference length implicitly assumes no influence of the
tank walls.

4. Influence of initial disturbances

In this section, we focus on the counter-rotative cells
occurrence phenomenon and on the double diffusive
instability, in relation to not using (simulation S1) or

using (simulation S2) a disturbance of the temperature
field at the initial time.

4.1. Counter-rotative cells

Counter-rotative cells are difficult to observe in
experiments. Thus, they have not been discerned in
the experiments E1 and E2. On the contrary, the
linear stability analyses predict the occurrence of al-
ternate co- and counter-rotative cells at the beginning
of the convective regime. However, weakly non-linear
stability analyses show that bifurcation at the point of
marginal stability is subcritical, for both the slot [10]
and wide tank [38] cases, so that counter-rotative cells
may not be observed. This is why it was interesting to
analyze carefully the numerical results, in order to
look for an evidence of the existence or non-existence
of counter-rotative cells. Fig. 10(a)-(f), obtained



2690 C. Sabbah et al. | International Journal of Heat and Mass Transfer 44 (2001) 2681-2697

Fig. 6. 0,p,att=1¢, i=1,...,4, for 0 <x<0.68 and 0.75<y < 3.5.

for the simulation S1, goes into the details of
the formation of the convective pattern. Successively,
(a) the streamlines get distorted, (b) co-rotative cells
form, (c¢) counter-rotative cells appear, (d) amplify
and reach their maximum intensity, (e) then weaken
till (f) leaving elongated co-rotative cells. Thus, in the
present calculation the convective regime does not
begin with alternate co- and counter-rotative cells, but
counter-rotative cells are clearly observed, for about
35 s.

Another interesting sequence, which is also obtained
for the simulation S1, is presented in Fig. 10(g)—(1). This
second sequence takes place quickly after the previous
one (about 30 s later). Successively, (g) co-rotative cells
have gained in intensity, (h) counter-rotative cells form
near the heating wall, (i) develop, (j) combine with the

co-rotative cells together with new counter-rotative cells
formed on the other side, (k) disappear, leaving the
latter cells, (1) which finally also disappear, leaving the
co-rotative cells of weak intensity. Duration of this
second sequence is about 1 mn.

The phenomena described above are much less visible
in the simulation S2, are in better agreement with the
experiments. Thus, Fig. 11(a)-(d), shows that at the
formation of the cell pattern the counter-rotative cells
are of weak intensity and remain squeezed between the
co-rotative cells. Fig. 11(e)-(h), to be compared to
Fig. 10(g)—(1), does not show counter-rotative cells but
only points out to a very weak counter-rotative motion
near the heating wall.

Counter-rotative cells may also appear when co-
rotative cells are merging, as visualized in Fig. 12,
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Fig. 7. Details of the temperature and salinity fields at = 7z, 0 <x<0.5 and 1.75<y<2.5.

Table 3
Mean values of the temperature rise of the heater 67;,, of the cell width /,, and of the cell height 4,,, ratio K, and Rayleigh number Ra
for the simulation S2

¢ (min) 0T (C) hm (cm) I (cm) K, Ra

4 0.78 X 1.03 X 50402

8 1.07 X 1.49 X 178486
12 1.15 1.00 2.29 0.41 238156
16 1.29 1.07 2.81 0.39 377076
20 1.39 1.08 3.31 0.37 508311
24 1.43 1.14 3.89 0.38 569395
28 1.48 1.33 4.57 0.42 653306

Table 4

Mean values of the temperature rise of the heater 07}, of the cell width /,, and of the cell height A,,, ratio K, and Rayleigh number Ra
for the experiment El

¢ (min) 0Ty (C) Iy (cm) I (cm) K, Ra
4 0.79 X 1.00 X 39468
8 1.06 1.30 1.40 0.61 127927
12 1.19 1.21 2.00 0.51 203202
16 1.27 1.23 2.70 0.49 263 606
20 1.40 1.36 3.30 0.49 389271
24 1.44 1.30 4.00 0.45 435702
28 1.56 1.37 4.90 0.44 600 120
obtained for the simulation S2. In fact, they are of weak in order to go into the details of the merging and to
intensity, but different gaps are used for the positive and show the structure of the interfaces. This sequence

negative values of the stream-function (ratio equal to 10) clearly shows a merging process: six co-rotative cells
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Table 5

Mean values of the temperature rise of the heater 67T;,, of the cell width 7, and of the cell height 4,,, ratio K, and Rayleigh number Ra

for the experiment E2

¢t (min) 0Tm (C) hm (cm) I (cm) K, Ra
4 0.85 X 1.00 X 67848
8 1.03 1.25 1.60 0.57 146 288
12 1.16 1.13 2.30 0.46 235337
16 1.22 1.29 3.10 0.50 287938
20 1.22 1.36 3.90 0.52 287938
24 1.26 1.36 4.60 0.51 327598
28 1.29 1.36 5.40 0.50 359930
L LA B R B L A Finally, let us mention that in the simpler situation
18 NN which assumes periodicity in the vertical direction or
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Fig. 8. Mean temperature rise of the heater vs time.
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Fig. 9. Mean height and width of the cells vs time.

(Fig. 12(a)) result in four cells (Fig. 12(f)). The merging
process is very complex (b)-(e) and induces a weak
counter-rotative motion. On the final pattern (f), one
can discern the inner cells inside the main ones and very
flattened counter-rotative cells at the interfaces of the
co-rotative cells of high intensity.

when a slot-type domain is considered, the configuration
with alternate co- and counter-rotative cells at the be-
ginning of the convective regime is much easier to cap-
ture [19,29,39].

4.2. Simultaneous creation of cells

Like for the the simulation S2, or for the experiments
El and E2, the phenomenon of simultaneous creation of
cells is observed for the simulation S1, but it occurs
much later than for S2, since the disturbances here only
correspond to the approximation and round-off errors.
This is visualized in Fig. 13, to be compared with Fig. 3,
which shows the stream-function fields at the different
times ;.

Beyond these qualitative comparisons, we have
performed a Fourier analysis in y of a nearly periodic
part of the flow. Fig. 14 shows the evolution of the
most unstable mode of the stream-function for the two
simulations and a time-shift is clearly observed. The
threshold value, i.e., under which one cannot discern
the exponential growth of the Fourier mode, is a pure
numerical phenomenon, resulting from the assumption
that the extracted part of the flow was perfectly peri-
odic, in order to achieve the Fourier analysis. In the
previous calculations [21,27,29], using also a spectral
method but for Dirichlet problems, different geometries
and different values of the dimensionless parameters,
the simultaneous creation was not observed if the ini-
tial state was not disturbed: the cavity was filled with
cells created successively, before the instability growth
was sufficiently high to induce any visible simultaneous
creation. On the contrary, one can check again in
Fig. 14 that the simultaneous creation process has time
to manifest itself before the end of the successive one,
for both simulations S1 and S2. Moreover, a linear
extrapolation of the straight part of curve (b) till time
t = 0 yields a value of about 107!, i.e., comparable to
the round-off error. Then, one can guess that for the
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Fig. 10. Details of the flow showing counter-rotative cells for 0 <x < 2.4 cm and 27 < y < 31 cm for the simulation S1, instantaneous
streamlines at: (a) + = 1020 s, —1.9420 <y <0; (b) t = 1070 s, —8.1719 < < 0.1066; (c) ¢t = 1080 s, —5.1654 </ <0.8300; (d) ¢ =
1090 s, —2.9600 <y < 1.6169; (e) t = 1100 s, —2.8991 <y < 1.2236; (f) t = 1110 s, —4.0242 <y <0.2070; (g) t = 1140 s, —9.8070 <
¥ <0.0333; (h) r=1160s, —6.3825<yy<1.4993; (i) +=1170s, —8.0776 < <3.1357; (j) t =1180s, —6.2141 <y <2.3842; (k)
t=1190s, —3.1768 <y < 1.9291; (1) r = 1200 s, —3.5403 <y <0.2063 (N.B. full lines are used for negative values).

present fluid flow problem, the sole round-off errors
would have induced the double diffusive instability,
even if the approximation errors were negligible.
Consequently, although if it is difficult to discern the
influence of the round-off and approximation errors,
one may think that it is natural to observe instability
in the present calculation, although no artificial dis-
turbances have been superimposed to the initial con-
ditions.

In order to go farther in this analysis of cell creation,
it is of interest to consider the flow computed in [22],
where it is not a spectral but a less accurate finite volume
method which is used. The computational domain is
10, L[x]0, H| with H/L = 2. At the initial time the fluid is
at rest, the temperature is homogeneous and the salinity
gradient is constant and downwards. For the boundary
conditions, (i) temperatures of the vertical walls are
imposed and adiabaticity is assumed at the top and
bottom of the cavity, (ii) homogeneous Neumann con-
ditions are used everywhere for salinity, and (iii) no-slip
conditions are used for velocity. The characteristic
parameters of the fluid are Pr =7 and Le = 100. The
characteristic parameters of the flow are Ra = 2.33 x
10° and R, = 7. These values are based on the temper-
ature difference between the vertical walls and on the
scale h,.

The spectral calculations have been performed using
a very fine grid: 150 x 120 x 8 (i.e., 150 x 120 grid-
points in eight sub-domains). Fig. 15 presents in-
stantaneous streamlines which can be compared to the
results presented in Fig. 3 of [22]. We note that the
spectral calculation does not show the simultaneous
creation of cells, but only a successive one, which
means that, as in [21,27,29], due to a lower instability
growth rate and different geometrical parameters the
approximation and round-off errors are not sufficient
here to cause the double diffusive instability. However,
it has been checked that the simultaneous creation of
cells is obtained with a slight disturbance of the initial
temperature field. Adding a 10~* random perturbation
to this field induces the double diffusive instability, once
the first convective cells in the lower and upper parts
are created. Thus, the high accuracy of the present
calculation prevents us to obtain what seemed to be
observed in [22]. However, reminding that the simula-
tion S2 had to be preferred to the simulation S1 for the
sake of comparison with laboratory experiments, one
can also assume that the calculation of [22] would be in
better agreement with the experimental data. Thus we
recover here that numerical approximations generally
work as the unavoidable experimental disturbances and
even that it is natural to add some disturbances at the
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Fig. 11. Details of the flow showing counter-rotative cells for 0 <x<2.4 cm and 27 <y <31 cm for the simulation S2, instanta-
neous streamlines at: (a) t=1550s, —2.0483 <y <0; (b) t=0610s, —4.0283 <y <0.3336; (c) t=0620s, —3.3678 <y <0.3587;
(d) t=630s, —3.3337<y¥<0.1108; (¢) r=680s, —7.5870<y<0.0101; (f) r=720s, —3.7137<y<0.4443; (g) t=730s,
—3.2368 < < 0.3933; (h) r =760 s, —3.0132 < <0.0342 (N.B. full lines are used for negative values).
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Fig. 12. Details of the flow showing merging of cells for 0 <x<2.4 cm and 27 <y <3l cm for the simulation S2, instantaneous
streamlines at: (a) ¢ =1400s, —5.1758 <y <0.1512; (b) ¢ =1540's, —5.9224 <y <0.3719; (c) t = 1600 s, —7.2252 < < 0.5355;
(d) t =1660 s, —8.2289 <y < 0.6457; (e) t = 1720 s, —11.543 < < 1.3000; (f) 1 = 1780 s, —12.935 < < 1.7220 (N.B. full lines are
used for negative values).
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Fig. 13. Stream-functiony att =1¢, i =1,...,4, for 0 <x<0.68 and 0.75 < y < 3.5, simulation S1 (N.B. full lines are used for negative

values).
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Fig. 14. Stream-function most instable Fourier mode vs time,
at x = 0.045 and for 2.25 <y <2.58: with (a) and without (b)
initial random disturbance on 7.

initial time, as done in the theoretical analyses of sta-
bility, when a highly accurate numerical method is
used.

5. Conclusion

Thanks to the use of a well-adapted multi-domain
Chebyshev spectral method, a reliable calculation of a
complex double diffusive convective flow has been
carried out. As a result, the experimental and numerical
evolutions of the flow patterns and of characteristic
quantities agree rather well. The numerical approach has
permitted a detailed study of the cell formation process.
Especially we have focused on the possible existence
of counter-rotative cells and on the phenomenon of
simultaneous creation of convective cells, before the end
of the successive one. It has appeared that both the
phenomena, existence of counter-rotative cells and
simultaneous creation of cells, are very sensitive to weak
disturbances of the initial state: counter-rotative cells are
of stronger intensity and the delay required to observe
the double diffusive instability is much greater when the
initial state is not disturbed. Such a numerical evidence
may give answers to those not clearly understood



2696 C. Sabbah et al. | International Journal of Heat and Mass Transfer 44 (2001) 2681-2697

Fig. 15. Instantaneous streamlines at z = {0.005,0.01,0.015,0.02} (N.B. full lines are used for negative values).

distortions between the experimental studies and nu-
merical, or theoretical, investigations.
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